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A method is proposed for calculating two-phase supersonic jets with allowance for the effect of the liquid on 
the turbulence characteristics of the carrier phase. 

A number of modern technical applications require a detailed description of the structure of supersonic jets bearing 
particles of atomized liquid fuel. It is known that the presence of a dispersed impurity in a turbulent flow in the form of solid 
particles or drops can have a substantial effect on the turbulence characteristics of the flow [ 1], which in turn determine the 
intensity of mixing processes. It was shown experimentally in [2] that supersonic gas-droplet flows are governed by the same 

laws as subsonic flows. An increase in the content of liquid in the jet leads to a deterioration in mixing, contraction of the jet, 

and an increase in its range. This indicates need for a further, more detailed accounting of the effect of phase interaction in 

both averaged and fluctuation motion. 
The methods that have been developed for modeling two-phase flows can be divided into two broad categories [3]. In 

both cases, the parameters of the gas phase are calculated in an Eulerian formulation, and the conservation equations for the 
carrier phase differ from the standard Navier-Stokes equations only in the presence of additional source terms connected with 
the effects of phase interaction. Here, the discrete phase is examined either in the Eulerian formulation (continuum 
approximation) or in a Lagrangian formulation (trajectory method). An analysis of the literature shows that the Eulerian 
approach is more widely used, its convenience owing to the fact that the methods of integration that are employed are the same 

as for the carrier phase. 
However, when calculations are being performed for two-phase flows in which the disperse phase has a polydisperse 

composition, it is necessary to integrate conservation equations for a large number of "classes" of particles - in accordance 

with their initial size distribution. This entails a significant increase in computing time, which is an obstacle to wider use of 

the given approach. Computing time can be reduced by one of two methods: change over to a Lagrangian formulation for the 
discrete phase with allowance for its instantaneous size distribution [3]; use more efficient algorithms for integration of 

equations written in the continuum approximation. 
The Pantankar-Spalding method [4] has been widely used to successfully model one-phase subsonic and supersonic 

flows in the boundary-layer approximation. This method involves a transition to the coordinates (x, o~). Here, the conservation 
equations, written in generalized form in cylindrical coordinates 
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appear as follows when written i.n the new coordinates: 
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Equation (2) does not contain the transverse velocity of the gas and can be solved by the Crank-Nicholson method 
with second-order accuracy. Here, no iterations are performed and computing time is reduced appreciably. 
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For two-phase flows, this method can be used without modification only within the framework of the "passive 
impurity" model - when the velocities of the phases are equal [5]. In the presence of phase-velocity nonequilibrium, changing 
from Eq. (1) to Eq. (2) will not eliminate the transverse component in the conservation equations for the disperse phase and 
thus allow use of the advantages of the method. This problem can be circumvented if we solve the equations of the disperse 
phase on a separate finite-difference grid in the coordinate system (x, Wp). Here, by analogy with the gas phase 

~p - -  ~ m  (3) 6 0 / 9  ~ 

In the above equation, ~Op is the stream function for the disperse phase. It is determined as 

�9 r e 

�9 P = S 9z~Ul~dy" (4) 
r i 

The indices e and i correspond to the external and internal boundaries of the mixing layer. 
In the solution of the equations for the dispersion medium and disperse phase, the exchange terms in (2) are determined 

on separate finite-difference grids by mutual interpolation of the independent variables at each integration step after calculation 
of the radial coordinates of the nodes on these grids (the longitudinal coordinates of the nodes coincide). 

The procedure just described can be performed for each particle if the polydisperse composition of the discrete phase 
is broken down into several "classes." In the present study, we will attempt to simplify our analysis of the possibilities of the 
given method by assuming that the droplets of the liquid phase are monodisperse. We also made the following assumptions: 
1) the boundary-layer approximation can be used; 2) the disperse phase is continuous and is characterized by distributed density 
#p, mean droplet velocity Up, and mean droplet temperature Tp; 3) coalescence and fragmentation of the droplets can be 
ignored; 4) slip of the particles is considered only in the longitudinal direction; 5) the dynamic interaction of the phases is 
determined by the resistance force; 6) the droplets are considered to be spherical, with a size equal to the mean volume-surface 
diameter. 

Written in cylindrical coordinates, the system of conservation equations for the gas phase includes the continuity 
equation 
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the projection of the momentum equation on the x axis 
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and the energy equation 
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This system of equations is supplemented by the equation of state for the gas and the well-known Lounder-Jones two- 
parameter turbulence model. Here, the model has additional terms connected with the presence of a second phase: 
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We used the usual group of constants in the turbulence model. The additional terms ep and Fp were calculated in 
accordance with [6]. The correction for supersonic compressibility was accounted for in the form of the dependence of the 
coefficient Ct~ on the Math'number of the flow [7]. 

The system of averaged equations for the disperse phase includes the following: 

the continuity equation 

0 1 0 (pvUp) + - -  - -  (yppV*)= 0, (11) 
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where 

V* = Vp + p'ffAop, Vp = V, 

the momentum equation projected on the x axis 
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the energy equation 
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To realize the proposed method, Eqs. (11)-(13) must be reduced to a form analogous to (1). 
We now introduce the ratio of the density of the gas to the distributed density of the droplets: x = p/pp. Then using 

a gradient representation for the correlation pp'Vp' = -Dpqopp/Oy, we find from Eqs. (5), (11) that 

Ox ppV* O----ff-=y-Oy 9Dppp y Oy yD, + 
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Thecorrelation Up'Vp' in Eq. (12) is proportional to the corresponding correlation for the gas. The diffusion coefficient 
of the particles Dp and the proportionality factor A (which is a function of the aerodynamic relaxation time of the particles and 
the Reynolds number in relative motion) are calculated as they were in [6]. Here, Eq. (12) can be written in the form (1), 

where the diffusion term is determined as 

(15) 
P 

The ratio of the gradients of the velocities of the disperse phase and dispersion medium can be determined from the 
previous integration step. Equation (13) need not be examined for the isothermal case. 

The proposed flow model was first of all substantiated for the case of the discharge of a submerged supersonic one- 
phase jet with M = 1.5. Figure 1 (curve 1) compares the decay of the axial velocity of the gas in a supersonic jet with an 
initial velocity of 420 m/sec and experimental data obtained on the unit described in [2]. The satisfactory agreement between 
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Fig. 1. Axial profiles of velocity in submerged supersonic gas (1) and!gas- 

droplet (2 and 3)jets. 

Fig. 2. Change in the distributed density of the liquid phase along the jet 
axis: 1) Gp = 17.7 g/see; 2) 7.9.0p,  kg/m 3. 

the theoretical and experimental (clear points) data confirms the correctness of the choice of turbulence model and the correction 
for supersonic compressibility. 

The same figure shows profiles of gas velocity (2) and droplet velocity (3) in a gas-droplet jet in which the initial rate 
of flow of kerosine TS-1 was Gp = 0.0079 kg/see (air flow rate G = 0.073 kg/sec). The presence of the drops of liquid 

increases the range of the jet, which is consistent with existing representations on the suppression of turbulence by particles 
of a second phase. The dark points show the mean velocity of the drops as measured by the time-of-flight method [8]. 

Figure 2 shows the change of the distributed density of kerosine along the jet axis for two values of initial liquid flow 
rate. Also shown is experimental data obtained by the method of low-angle scattering and attenuation of laser radiation [2]. 
The qualitative and quantitative agreement between the theoretical and empirical values of mean velocity and the distributed 
density of the drops indicates the adequacy of the chosen model of the aerodynamic interaction of the phases, turbulent diffusion 
of the drops, and the effect of the liquid phase on the turbulence structure of the jet. 

The time of calculation of a typical variant by the proposed method on an IBM PC AT is no greater than 3 min, which 
makes it possible to recommend the method for more complex classes of flows - such as the vaporization and combustion of 
liquid fuels with a polydisperse drop size in a turbulent flow. 

NOTATION 

a, b, c, d, coefficients in the generalized equation; Cel , Ce2 , C/x, Ok, constants in the turbulence model; Dp, diffusion 
coefficient of the particles; Fx, phase interaction force; Gp, flow rate of the liquid phase; H, total enthalpy of the dispersion 
medium; K, kinetic turbulence energy; Pr, Prandtl number; Ss, source term in the generalized equation; T, temperature; U, 

V, longitudinal and transverse components of velocity; x, y, longitudinal and transverse coordinates; ep, Fp, additional terms 
in the turbulence model connected with the presence of the second phase; e, rate of dissipation of turbulence energy; /~, 
viscosity coefficient of the gas; ~b, stream function; x, inverse of the mass concentration of droplets; 0, density; w, 
dimensionless stream function; I's, diffusion term in the generalized equation; ~, generalized variable. Indices: p, pertaining 
to the disperse phase; ef, effective value; t, turbulent value. 
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